UNITED STATES SECURITIES AND EXCHANGE COMMISSION

Washington, D.C. 20549

FORM 6-K

REPORT OF FOREIGN PRIVATE ISSUER PURSUANT TO SECTION 13a-16 OR 15d-16 UNDER THE SECURITIES EXCHANGE ACT OF 1934

For the month of November, 2020

Commission File Number: 001-36815

Ascendis Pharma A/S

(Exact Name of Registrant as Specified in Its Charter)

Tuborg Boulevard 12 DK-2900 Hellerup Denmark (Address of principal executive offices)

Indicate by check mark whether the registrant files or will file annual reports under cover of Form 20-F or Form 40-F.

Form 20-F ⊠ Form 40-F □

Indicate by check mark if the registrant is submitting the Form 6-K in paper as permitted by Regulation S-T Rule 101(b)(1):

Indicate by check mark if the registrant is submitting the Form 6-K in paper as permitted by Regulation S-T Rule 101(b)(7):

Spokespersons of Ascendis Pharma A/S (the "Company") presented the information in the presentation slides attached hereto as Exhibit 99.1 in a webcast on November 20, 2020.

The furnishing of the attached presentation is not an admission as to the materiality of any information therein. The information contained in the presentation is summary information that is intended to be considered in the context of more complete information included in the Company's filings with the Securities and Exchange Commission (the "SEC") and other public announcements that the Company has made and may make from time to time. The Company undertakes no duty or obligation to update or revise the information contained in this report, although it may do so from time to time as its management believes is appropriate. Any such updating may be made through the filing or furnishing of other reports or documents with the SEC or through other public disclosures.

Exhibits

99.1 Company Presentation

SIGNATURES

Pursuant to the requirements of the Securities Exchange Act of 1934, as amended, the registrant has duly caused this report to be signed on its behalf by the undersigned hereunto duly authorized.

Ascendis Pharma A/S

Date: November 20, 2020

By: /s/ Michael Wolff Jensen Michael Wolff Jensen Chairman and Senior Vice President, Chief Legal Officer

Ascendis Pharma A/S

Virtual Oncology R&D Day November 20, 2020

Cautionary Note On Forward-Looking Statements

This presentation contains forward-looking statements. All statements other than statements of historical facts contained in this presentation, such as statements regarding our future results of operations and financial position, including our business strategy, prospective products, availability of funding, clinical trial results, product approvals and regulatory pathways, collaborations, licensing or other arrangements, the scope, progress, results and costs of developing our product candidates or any other future product candidates, the potential market size and size of the potential patient populations for our product candidates, timing and likelihood of success, plans and objectives of management for future operations, the scope of protection we are able to establish and maintain for intellectual property rights covering our product candidates, and future results of current and anticipated products, are forward-looking statements. These forward-looking statements are based on our current expectations and beliefs, as well as assumptions concerning future events. These statements involve known and unknown risks, uncertainties and other factors that could cause our actual results to differ materially from the results discussed in the forward-looking statements. These risks, uncertainties and other factors are more fully described in our reports filed with or submitted to the Securities and Exchange Commission, including, without limitation, our most recent Annual Report on Form 20-F filed with the SEC on April 3, 2020 particularly in the sections titled "Risk Factors" and "Management's Discussion and Analysis of Financial Condition and Results of Operations". In light of the significant uncertainties in our forward-looking statements, you should not place undue reliance on these statements or regard these statements as a representation or warranty by us or any other person that we will achieve our objectives and plans in any specified timeframe, or at all.

Any forward-looking statement made by us in this presentation speaks only as of the date of this presentation and represents our estimates and assumptions only as of the date of this presentation. Except as required by law, we assume no obligation to update these statements publicly, whether as a result of new information, future events, changed circumstances or otherwise after the date of this presentation.

This presentation concerns product candidates that are or have been under clinical investigation and which have not yet been approved for marketing by the U.S. Food and Drug Administration, European Medicines Agency or other foreign regulatory authorities. These product candidates are currently limited by U.S. Federal law to investigational use, and no representations are made as to their safety or effectiveness for the purposes for which they are being investigated.

Oncology product rights owned by Ascendis Pharma Oncology Division A/S (a wholly

owned subsidiary of Ascendis Pharma A/S). Ascendis, Ascendis Pharma, the Ascendis Pharma logo, the company logo and TransCon are trademarks owned by the Ascendis Pharma Group. ©November 2020 2 Ascendis Pharma A/S.

Virtual Oncology R&D Day Agenda

Welcome & Agenda Overview Scott T. Smith, SVP, CFO

9:01-9:05 a.m.

Vision 3x3 Jan Møller Mikkelsen, President & CEO

9:05-9:20 a.m.

3

TransCon[™] Platform & Product Innovation Kennett Sprogøe, Ph.D., SVP, Head of Innovation and Research

9:20-10:00 a.m.

TransCon TLR7/8 Agonist & TransCon IL-2 β/γ Juha Punnonen, M.D., Ph.D., SVP, Head of Oncology

Stina Singel, M.D., Ph.D., Head of Clinical Development, Oncology

10:00-10:30 a.m.

Q&A

4

Vision 3x3

Jan Møller Mikkelsen President & CEO

Company Overview

- Create best-in-class products addressing unmet medical needs by applying TransCon™ technologies to parent drugs with clinical proof-of-concept
- Endocrinology rare disease
 - TransCon hGH: pediatric GHD BLA (PDUFA June 25, 2021) and MAA submitted; adult GHD phase 3 trial ongoing
 - TransCon PTH: Submitted US, Canadian and European regulatory filings to initiate adult HP phase 3 trial
 - TransCon CNP: Phase 2 ACcomplisH ongoing and ACcomplisH China Trial¹ initiated for achondroplasia
 - Build leading market positions for each product candidate with commercial focus on maximizing global reach
 - Strategic investment in VISEN Pharmaceuticals for endocrinology rare disease products in China
- Oncology
 - First IND filing expected for TransCon TLR7/8 Agonist by year-end 2020
 - TransCon IL-2 β/γ IND filing or similar expected in Q3 2021
- As of September 30, 2020, cash, cash equivalents and marketable securities of €957.5 million

5 Through VISEN Pharmaceuticals

Vision 3x3: Building a Leading BioPharma Company

Our Goal is to Achieve Sustainable Growth through Multiple Approaches

- Obtain regulatory approval for three independent Endocrinology Rare Disease products
- TransCon Growth Hormone for pediatric growth hormone deficiency
- TransCon PTH for adult hypoparathyroidism
- TransCon CNP for achondroplasia
- Grow Endocrinology Rare Disease pipeline through
- Global clinical reach
- Pursuing 9 total indications, label optimization, and life cycle management
- New endocrinology products
- Establish global commercial presence for our Endocrinology Rare Disease area
- Build integrated commercial organization in North America and select European countries
- Establish global commercial presence through partners with local expertise and infrastructure
- Advance a high value oncology pipeline with one IND or similar filing each year
- Create a third independent therapeutic area with a diversified pipeline •

All product candidates are investigational. For investor communication only. Not for use in promotion or product commercialisation.

6

TransCon Technology Platform & Product Innovation

Kennett Sprogøe, Ph.D. SVP, Head of Innovation and Research

The Evolution of TransCon Technology

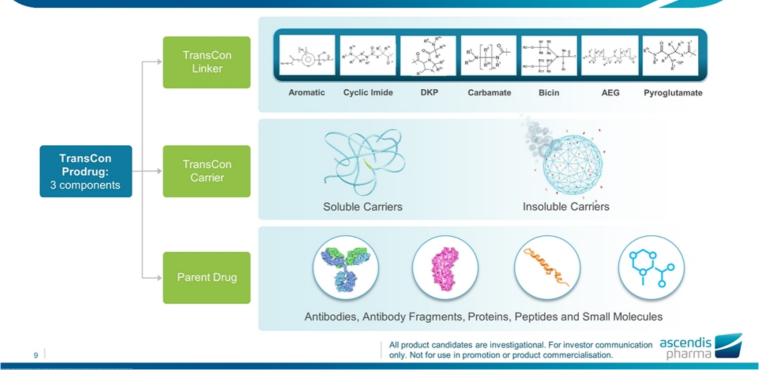
Vision of Ascendis Founding Scientists

Precise release of active drug, from a prodrug, without changing the molecule's biology

The Historical Challenge

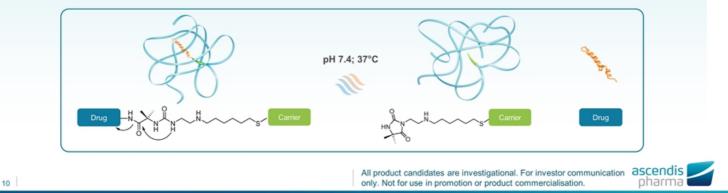
Conventional technologies (protein enlargement and encapsulation) are associated with altered biology and unpredictable drug release

The Revolutionary Solution

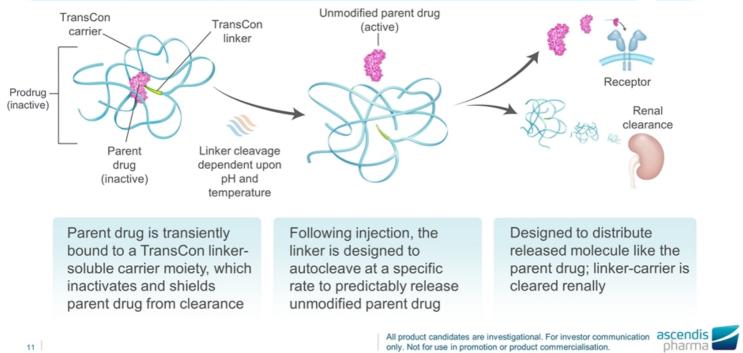

To combine prodrug and predictable release technologies into one platform to ensure tailored delivery of unmodified drug

TransCon technology reversibly conjugates a drug to a carrier and predictably releases the unmodified drug under physiological conditions

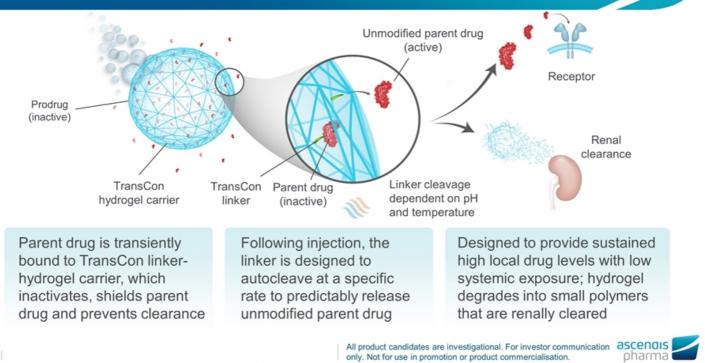
All product candidates are investigational. For investor communication only. Not for use in promotion or product commercialisation.


8

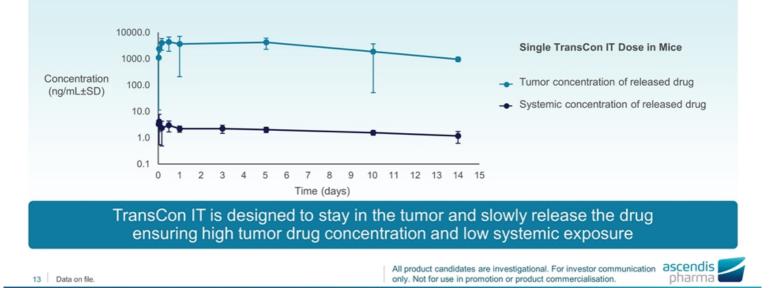
Transient Conjugation: A Powerful, Flexible Platform



TransCon Technology: The TransCon Linker


- Cleaves in an enzyme-independent fashion, ensuring reproducible drug release; *in vitro* to *in vivo* correlation with high predictability
- TransCon linkers remain covalently bound to the carrier molecule after release of the unmodified parent drug
- Enables tunable design of prodrugs with dosing frequency from daily up to six months or more

TransCon Technology: Sustained Systemic Release



TransCon IT: Potential Paradigm Shift in Intratumoral Delivery

TransCon Intratumoral (IT) addresses the problems of conventional IT administration including rapid clearance from the tumor, high systemic exposure and toxicity

Algorithm Used in Endocrinology Used to Build Oncology Pipeline

TransCon Enables Multi-level Patent Protection

- TransCon prodrugs eligible for • new composition of matter IP
 - TransCon prodrugs are new _ chemical entities
 - Enables new patent life for prodrugs of parent drugs
- A multi-layered patent strategy is . applied to protect our assets

TransCon: An Innovative Technology Platform

- TransCon technologies combine the benefits from prodrug and predictable release technologies with the known biology of the parent drug
- Technology validated within endocrinology with a high success rate in multiple clinical • programs; TransCon hGH BLA/MAA filed
- Building on the success in endocrinology, we apply our algorithm for product innovation to • help select our oncology pipeline
- Developed an intratumoral platform that aims to transform IT administration of small molecules, peptides, proteins, antibody fragments and antibodies
- TransCon prodrugs are new chemical entities eligible for new composition of matter IP

Our vision is to leverage TransCon technologies to turn the body's immune system into the therapeutic - to improve patient outcomes

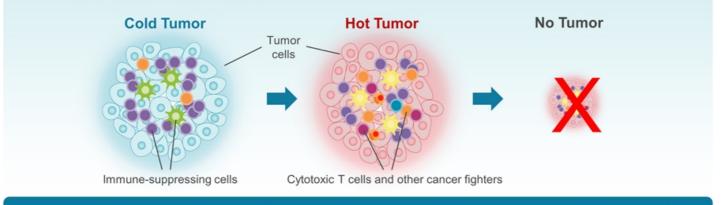
> All product candidates are investigational. For investor communication ascendis only. Not for use in promotion or product commercialisation.

oharma

16

17

Oncology


Juha Punnonen, M.D., Ph.D. SVP, Head of Oncology

Stina Singel, M.D., Ph.D. Head of Clinical Development, Oncology

TransCon Positioned to Transform Cancer Therapy

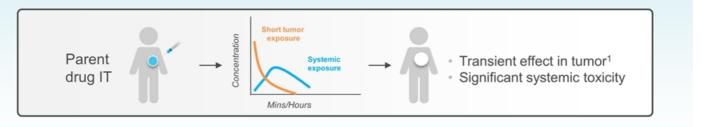
TransCon systemic and IT therapies designed to enhance anti-tumor responses by

- Providing sustained modulation of tumor microenvironments
- Activating cytotoxic immune cells

Applicable for diverse drug classes and mechanisms of action; opportunity for combination approaches

18

Oncology Portfolio Strategy


19

- Create best-in-class oncology therapies by applying TransCon systemic and IT technologies to parent drugs addressing clinically validated pathways
- Improve outcomes with parent drugs that are currently limited by suboptimal 0 efficacy and systemic toxicity
 - Apply Ascendis' unique algorithm for product innovation to oncology development
- Build a diversified high-value pipeline addressing multiple indications 0
 - Two near-term IND candidates with potential synergistic combination effects
- Enable rapid path to global commercialization

Intratumoral Treatment Has Been Challenging

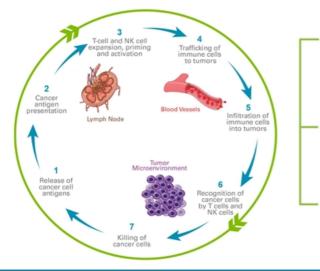
- Treatment of cancer via IT administration of oncolytic virus has achieved clinical proof of concept with talimogene laherparepvec (T-VEC) in advanced melanoma
- However, conventional IT treatments face major challenges due to short tumor exposures¹, high systemic Cmax and need for frequent dosing

TransCon technology has the potential to overcome the limitations of conventional intratumoral treatments

1 Example: STING agonist "plasma half-life ranging from 8 to 28 min" Meric-Bernstam F, et al. ASCO annual meeting, 2019; Oral presentation: Abstract 2507. 20

All product candidates are investigational. For investor communication ascendis only. Not for use in promotion or product commercialisation.

pharma


TransCon IT Aims to Transform Intratumoral Treatments

- Slow IT release allows for potential activity in tumor and draining lymph nodes for weeks or months, while keeping systemic exposure minimal
- · Designed to enable new multi-agent combinations without added toxicity
- Potential for long dosing interval enabling treatments of hard-to-access tumors

TransCon technology provides potential for sustained modulation of tumor microenvironments with infrequent dosing and minimized systemic toxicity

Two Near-term IND Candidates - Potential to Expand Pipeline to Address All Steps of the Immunity Cycle

22

TransCon TLR7/8 Agonist

Designed to activate antigen-presenting cells and enhance antigen presentation and, thereby, promote activation of cytotoxic immune cells (steps 2 and 6).

TransCon IL-2 β/γ

Designed to aid T cell and NK cell expansion, priming and activation as well as infiltration of immune cells in tumors (steps 3 and 5).

Additional TransCon Candidates in Preclinical Research

TransCon product candidates using systemic and IT approaches have the potential to affect all steps in the immunity cycle.

Combination approaches enable impact on all critical steps of anti-tumor response

Product Candidates in Oncology

23

Opportunity for TransCon TLR7/8 Agonist in Solid Tumors

Efficacy

- Each injection designed to provide sustained exposure in the tumor for months to enhance immune activation
- Reduce risk of reaching super-high "ablative", nonimmunogenic levels

Safety

- Low systemic toxicity expected to reduce dose-limiting adverse events
- Infrequent dosing designed to improve practicality and reduce injection-related complications

Broad application

· Essentially all solid tumors are accessible for injection

TransCon TLR7/8 Agonist

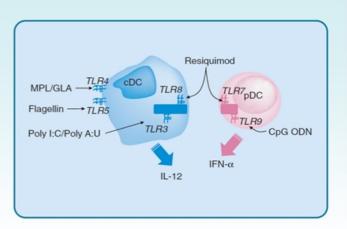
Designed for intratumoral, sustained release with *minimal systemic exposure* aiming for *superior efficacy*

TLRs: Innate Immune Sensors of "Danger" Associated with Pathogens or Cell Death

Toll-like receptors (TLRs):

- Receptors for Pathogen- or Danger- (cell • death) Associated Molecular Patterns
- Activate innate immunity, antigen • presenting cells (APCs) in particular
 - Results in priming and expansion of cytolytic and helper T cells
- Inhibit suppressive mechanisms limiting 0 anti-tumor responses

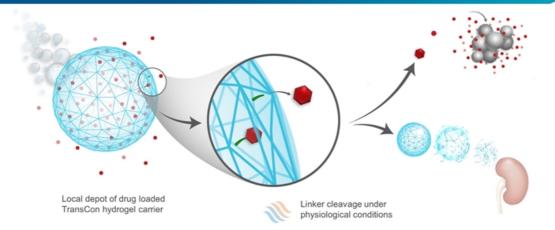
TLRs activate several key pathways critical in host defense against tumors


25 Bourguin C, et al. Pharmacol Res, 2020; 154:104192.

Resiquimod: TLR7/8 Agonist^{1,2}

Small molecule agonist of both TLR7 and TLR8

- TLR7: mainly expressed in plasmacytoid dendritic cells (pDCs), to some extent in B cells, monocytes, macrophages and conventional dendritic cells (DCs)
- TLR8: primarily expressed in conventional DCs, monocytes, macrophages and myeloid DCs
- Potent activator of the innate immunity
 - Elevates proinflammatory cytokines: IL-12, IFNs, TNF- α , IL-1, chemokines
 - Enhances antigen presentation: upregulated MHCII, costimulatory molecules (e.g. CD80/86)
 - Enhances anti-tumor immunity

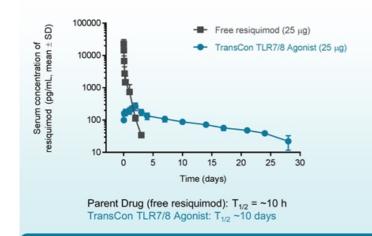

Resiguimod activates both conventional DCs and pDCs

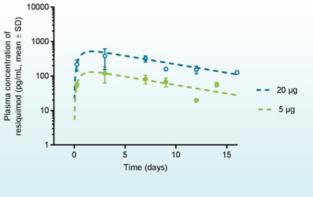
 ¹ Vasilakos J and Tomai M. Exp Rev Vaccines, 2013; 12:809-819.
 ² Rook A, et al. Blood. 2015;126(25):2765. 26

All product candidates are investigational. For investor communication ascendis only. Not for use in promotion or product commercialisation.

pharma

TransCon TLR7/8 Agonist: Sustained Intratumoral Release of Resiguimod


- Resignimod transiently conjugated to TransCon hydrogel carrier, designed to provide sustained local release of unmodified resignimod
- Designed to provide sustained activation of intratumoral APCs driving tumor antigen presentation
 and induction of immune stimulatory cytokines in the tumor

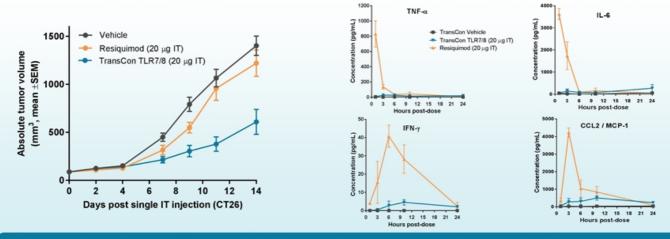

27

TransCon TLR7/8 Agonist Resulted in Sustained Release of Resiguimod over Several Weeks

Subcutaneous administration in rats

Intratumoral (CT26) administration in mice

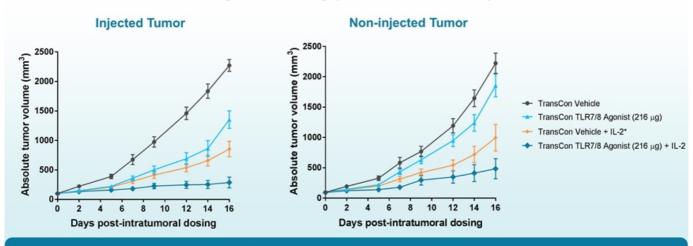
TransCon TLR7/8 Agonist: T_{1/2} ~12 days


TransCon technology enables 25-fold increased half-life and avoids high Cmax

28 Zuniga L, et al. SITC annual meeting. 2019; Poster 676.

Potent Tumor-growth Inhibition with Low Systemic Cytokines

Single Dose TransCon TLR7/8 Agonist versus Comparable Dose of Resiguimod



TransCon TLR7/8 Agonist has the potential to provide more potent anti-tumor benefits without doselimiting toxicity, as IL-6 and TNF-α associate with cytokine release syndrome in patients^{1,2}

¹ Gullo A, et al. *Front Biosci.* 2010; E2: 906-911. ² Norelli M, et al. *Nat Med.* 2018; 24(6):739-748. All product candidates are investigational. For investor communication ascendis only. Not for use in promotion or product commercialisation.

Single-dose of TransCon TLR7/8 Agonist Triggered Abscopal Anti-tumor Inhibition and Enhanced Anti-tumor Effects of IL-2

Single IT Dosing (CT26 tumor model)

TransCon TLR7/8 Agonist IND expected by year-end 2020

*IL-2 dosed at 20 μg twice daily on days 0-4, once daily on days 8-12. Zuniga L, et al. SITC annual meeting. 2019; Poster 676. 30

All product candidates are investigational. For investor communication ascendis only. Not for use in promotion or product commercialisation.

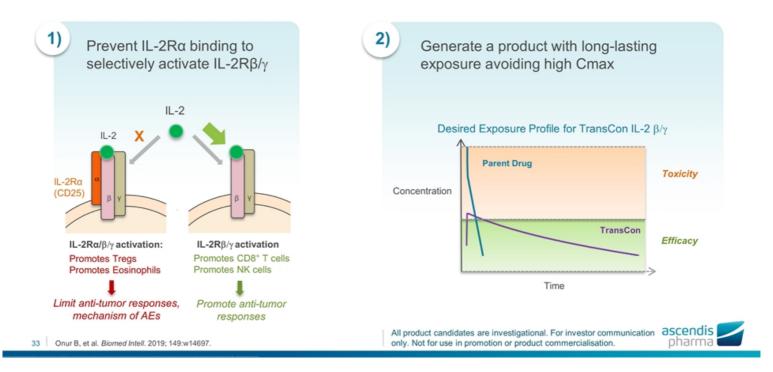
pharma

31

Product Candidates in Oncology IL-2 Selective for the IL-2Rβ/γ

Interleukin-2 (IL-2): Validated Cytokine with Suboptimal Receptor Binding and PK Properties

Suboptimal receptor binding


- Two receptors: IL-2R $\alpha/\beta/\gamma$ and IL-2R β/γ
- $\alpha/\beta/\gamma$ receptor activates Tregs and endothelial cells, reducing efficacy and increasing risk of capillary leak syndrome

Suboptimal PK

- Several IL-2 approaches in development
- To our knowledge, ٠ none have fully solved both shortcomings of IL-2

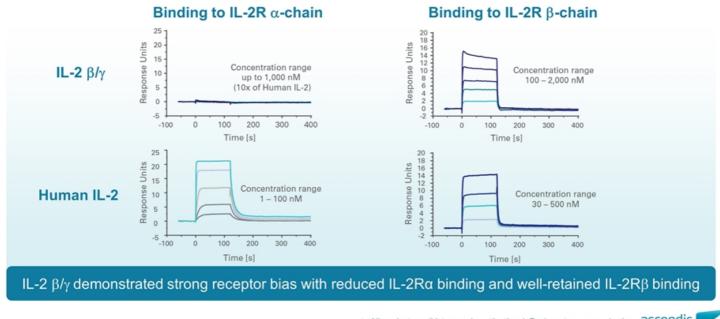
Next Generation IL-2: Designed for Desired Receptor Binding and Exposure

Generation of IL-2 Variant

Introduction of cysteine at α -binding site of IL-2 (aldesleukin)

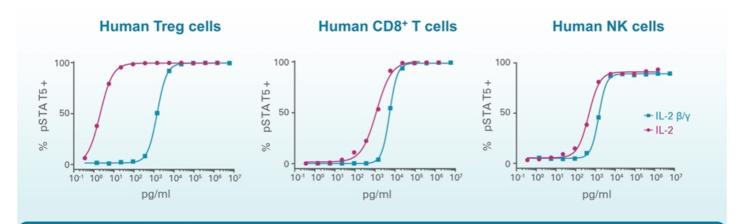
Blocking IL-2Rα-binding

Site-selective permanent PEG conjugation (5kDa) of introduced cysteine



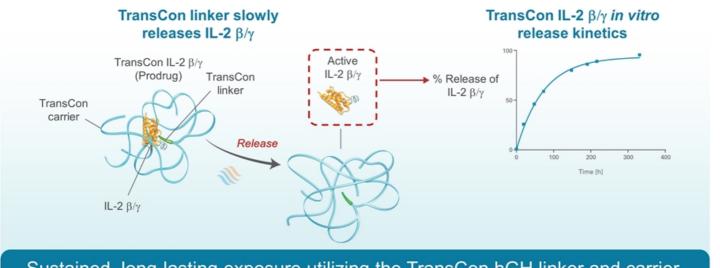
Optimized IL-2 β/γ receptor selectivity and potency by permanent site-selective PEG conjugation at IL-2R α -binding site

All product candidates are investigational. For investor communication only. Not for use in promotion or product commercialisation.


34

Receptor Selectivity Demonstrated in Binding Assays

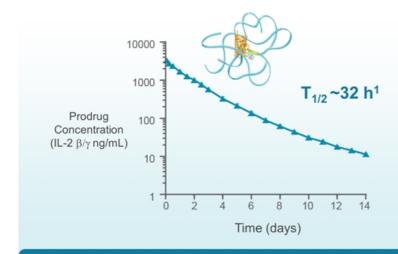
35 Rosen D, et al. AACR annual meeting. 2020; Poster 4507.


Receptor Selectivity Confirmed in Primary Human Cells

Substantially reduced potency on primary human Treg cells compared to rhIL-2 with minimal potency loss on CD8⁺ T cells and NK cells

36 Rosen D, et al. AACR annual meeting. 2020; Poster 4507.

Design of TransCon IL-2 β/γ : 2) TransCon Technology to Optimize Exposure

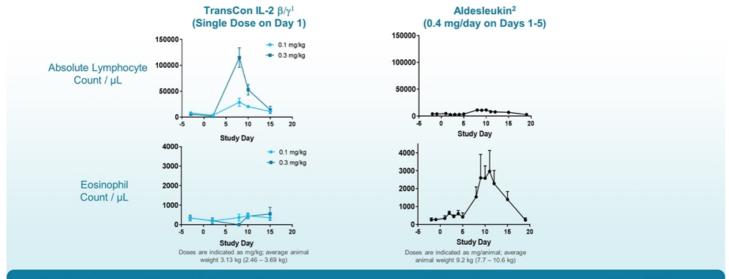


Sustained, long-lasting exposure utilizing the TransCon hGH linker and carrier, potential to support every 3-week dosing

37 Rosen D, et al. AACR annual meeting. 2020; Poster 4507.

All product candidates are investigational. For investor communication ascendis only. Not for use in promotion or product commercialisation.

TransCon IL-2 β/γ Resulted in Long-lasting Exposure in NHP

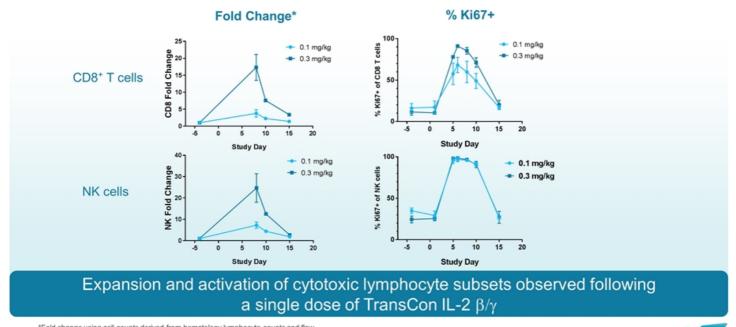


- TransCon IL-2 β/γ plasma PK in NHP demonstrated prolonged, sustained release of IL-2 β/γ
- T_{1/2} of TransCon IL-2 β/γ prodrug and released IL-2 β/γ^2 was ~32 h

PK profile supports potential best-in-class properties

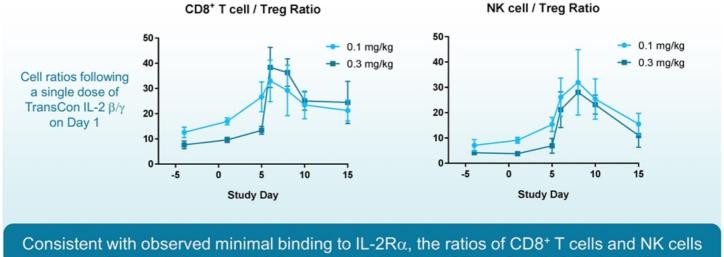
NHP = non-human primates. ¹Rosen D, et al. AACR annual meeting. 2020; Poster 4507. ³⁸
²Data on file.

Robust Increase in Lymphocyte Count with Minimal Eosinophil Expansion in NHP

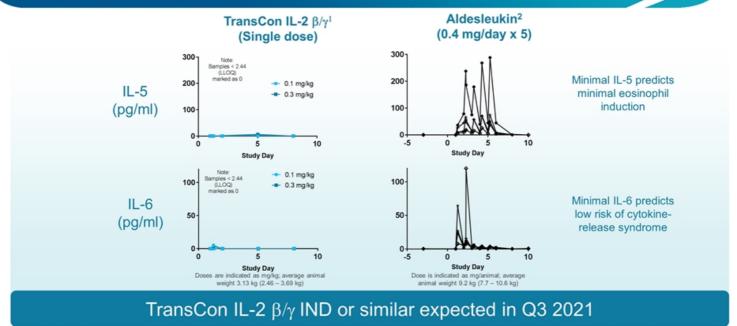

Single dose provided >10-fold and prolonged enhancement of lymphocyte counts supporting Q3W dosing; minimal effect on eosinophils suggests low risk of vascular leak syndrome syndrome^{3,4}

Q3W = every 3 weeks ¹Data on file. ²Rosen D, et al. AACR annual meeting. 2020; Poster 4507. ³Rand, et al. *J Clin Invest*. 1991; 88: 825. ⁴Van Haelst Pisani C, et al. *Blood*. 1991;78:1538. 39

All product candidates are investigational. For investor communication ascendis only. Not for use in promotion or product commercialisation.

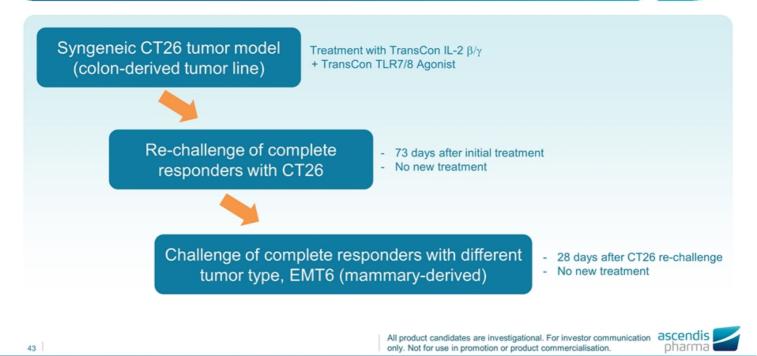

_

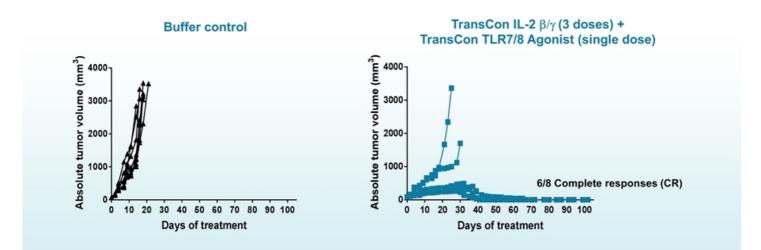
Potent CD8⁺ T Cell and NK Cell Expansion and Activation in NHP


*Fold change using cell counts derived from hematology lymphocyte counts and flow cytometry-based frequencies within lymphocytes.
 Data on file.
 All product candidates are investigational. For investor communication only. Not for use in promotion or product commercialisation.

TransCon IL-2 β/γ Expands Ratios of CD8⁺ T Cells and NK Cells Over Treg Cells in NHP

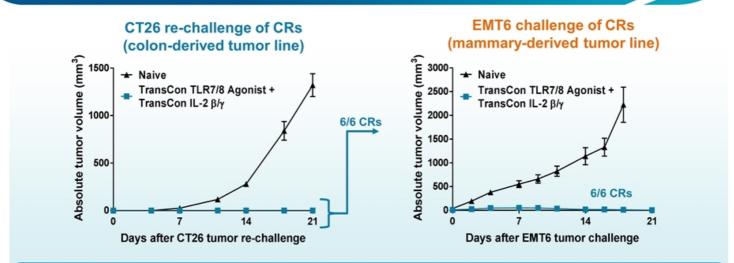
over Treg cells increased following administration of TransCon IL-2 β/γ in NHP


Single Dose TransCon IL-2 β/γ Induced Lower Levels of Systemic Inflammation Markers in NHP When Compared to Aldesleukin


Data on file. 42 ²Rosen D, et al. AACR annual meeting. 2020; Poster 4507. All product candidates are investigational. For investor communication ascendis only. Not for use in promotion or product commercialisation.

_

TransCon IL-2 β/γ Plus TransCon TLR7/8 Agonist Resulted in Durable Complete Tumor Regressions in the CT26 Tumor Model



The immune activating mechanism of action of TransCon IL-2 β/γ plus TransCon TLR7/8 Agonist and complete responses suggests potential for anti-tumor immune memory

44 Data on file

All product candidates are investigational. For investor communication ascendis only. Not for use in promotion or product commercialisation.

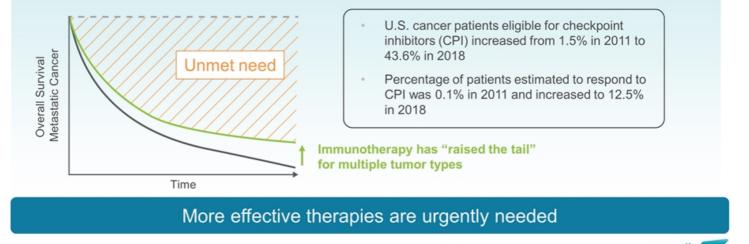
Potent Immune Memory and Cross-reactive Anti-tumor Response Against a New Tumor Type

Protection against initial tumor and a new tumor type, suggesting potent anti-tumor memory and cross-reactive anti-tumor immunity

Potential Paradigm Shift to How Cancer is Treated

- TransCon technologies may enable a new treatment paradigm building upon well-known biology
- Two near-term IND candidates demonstrating potentially best-in-class properties
 - TransCon TLR7/8 Agonist designed for intratumoral, long-term sustained release for superior efficacy with minimal systemic adverse events
 - TransCon IL-2 β/γ designed for IL-2R β/γ selectivity, combined with low Cmax and long exposure
 - Combination resulted in potent anti-tumor responses and immunological memory, including cross-immunity against a new tumor type
- TransCon TLR7/8 Agonist IND planned by year-end 2020; TransCon IL-2 β/γ IND or similar planned for Q3 2021

All product candidates are investigational. For investor communication only. Not for use in promotion or product commercialisation.


46

Unmet Medical Need Remains High Despite Advancements

- Immunotherapy has given hope for dramatic improvement in cancer treatment...
- But most cancer patients today are not benefiting from immunotherapy

48 Haslam A and Prasad V. JAMA Netw Open. 2019;2(5):e192535.

Clinical Development Strategy in Oncology to Take Advantage of the Clinically Validated TransCon Platform

BUILD

safety and tolerability profile while identifying appropriate dose

- Across various indications
- As monotherapy and . in combination with standard of care
- In combination with • internal pipeline

ESTABLISH

proof-of-concept efficacy in indications of high unmet medical need

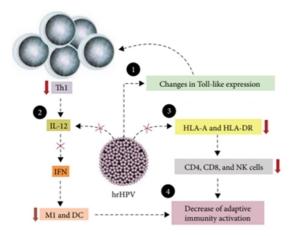
- Indications with strong scientific rationale
- Available benchmark data

EXPAND

to other indications based on

- Unmet need
- Emerging data and changing treatment landscape

Phase 1/2 Dose Escalation and Dose Expansion Study of TransCon TLR7/8 Agonist Alone or in Combination with CPI


50 MTD: maximum tolerated dose; ORR: overall response rate using RECIST 1.1

Part 1: Monotherapy	Part 2: Combination with CPI		Part 3: Combination with CPI
Any solid tumor, any line	Indications with known CPI activity		Multiple indication-specific cohorts at Recommended Ph2 Dose (RP2D)
ojectives:			
Safety and tolerability; defin	e MTD and RP2D		
Pharmacokinetics / pharma	codynamics (PK/PD)		
Preliminary anti-tumor effica	acy (ORR, duration of and tim	ne t	o response)

Initial Indication Selection Based on Strong Scientific Rationale to Focus on HPV-associated Cancers

TLRs and HPV-associated cancers¹

Combination with CPI

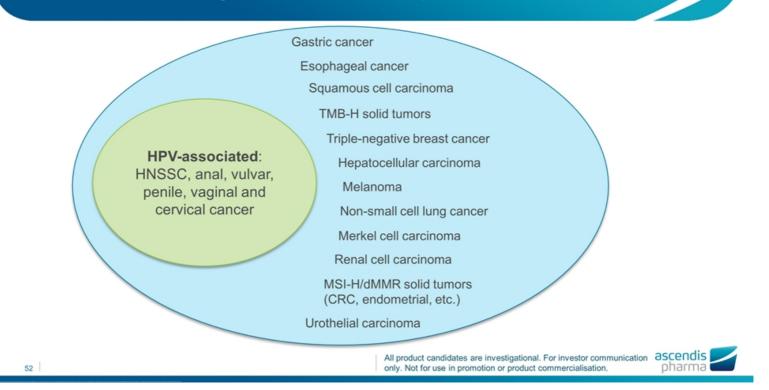
HPV-associated tumors:

- HNSCC
- · Others (anal, cervical, vulvar, penile, vaginal)

Other indications will be added based on

- Unmet need
- · Emerging data and changing treatment landscape

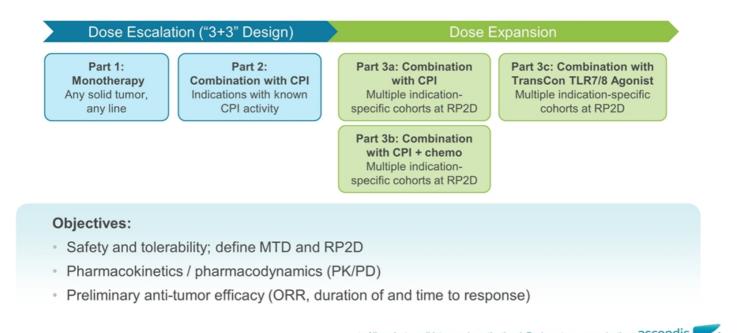
HNSCC: HPV+ prevalence rising -- for every 2 new cases of HPVoropharyngeal carcinoma diagnosed, 5 new cases HPV+2


Anal, cervical, vulvar, penile, vaginal: vast majority (>70-90%) are HPV+

HNSCC: head and neck squamous cell carcinoma; HPV: human papillomavirus

¹Barros M, et al. J Immunology Res. 2018; 2912671:1-17. ²Mahal B, et al. Cancer Epidemiol Biomarkers Prev. 2019; 10:1660-1667. 51

TransCon TLR7/8 Agonist: Potential to Expand to Other Indications


TransCon TLR7/8 Agonist - Summary

- Sustained IT delivery using the validated TransCon platform offers a new treatment paradigm with potential for superior efficacy and safety
- IND submission anticipated by year-end 2020
 - Engaging major academic centers
- Clinical development strategy aims to:
 - Build safety and tolerability profile across multiple indications and with standard of care combination partner
 - Establish proof-of-concept efficacy, focusing on indications of high unmet need that have strong scientific rationale for TLR7/8 agonists
 - Expand to other indications based on unmet need and changing treatment landscape

53

All product candidates are investigational. For investor communication ascendis only. Not for use in promotion or product commercialisation.

TransCon IL-2 β/γ – Potential Backbone Agent in Oncology

- TransCon IL-2 β/γ has potential to be the best-in-class IL-2 molecule •
- IND or similar submission anticipated in Q3 2021 •
- Clinical development strategy aims to: •
 - Build safety and tolerability profile across multiple indications and with standard of care combination partners and internal pipeline
 - Establish proof-of-concept efficacy, focusing on indications of high unmet need that derive insufficient benefit from checkpoint inhibitors alone
 - Expand to other indications based on unmet need and changing treatment landscape

Oncology Summary

- Best-in-class potential using systemic and intratumoral TransCon technologies
- Differentiated product candidates
 - TransCon TLR7/8 Agonist
 - Potential to improve efficacy and practicality of intratumoral treatments
 - IND expected for TransCon TLR7/8 Agonist by year-end 2020
 - TransCon IL-2 β/γ
 - Potential to become a backbone agent in oncology
 - = IND or similar expected TransCon IL-2 β/γ in Q3 2021
- Opportunity to expand pipeline to impact all aspects of anti-tumor response
 - Large number of validated oncology targets with known limitations

Aiming to help cancer patients live longer and better!

All product candidates are investigational. For investor communication only. Not for use in promotion or product commercialisation.

56

